Categories
hdf5 pandas python

When reading huge HDF5 file with “pandas.read_hdf() “, why do I still get MemoryError even though I read in chunks by specifying chunksize?

Problem description:

I use python pandas to read a few large CSV file and store it in HDF5 file, the resulting HDF5 file is about 10GB.
The problem happens when reading it back. Even though I tried to read it back in chunks, I still get MemoryError.

Here is How I create the HDF5 file:

import glob, os
import pandas as pd
hdf = pd.HDFStore('raw_sample_storage2.h5')
os.chdir("C:/RawDataCollection/raw_samples/PLB_Gate")
for filename in glob.glob("RD_*.txt"):
raw_df = pd.read_csv(filename,
sep=' ',
header=None,
names=['time', 'GW_time', 'node_id', 'X', 'Y', 'Z', 'status', 'seq', 'rssi', 'lqi'],
dtype={'GW_time': uint32, 'node_id': uint8, 'X': uint16, 'Y': uint16, 'Z':uint16, 'status': uint8, 'seq': uint8, 'rssi': int8, 'lqi': uint8},
parse_dates=['time'],
date_parser=dateparse,
chunksize=50000,
skip_blank_lines=True)
for chunk in raw_df:
hdf.append('raw_sample_all', chunk, format="table", data_columns = True, index = True, compression='blosc', complevel=9)

Here is How I try to read it back in chunks:

for df in pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', chunksize=300000):
print(df.head(1))

Here is the error message I got:

---------------------------------------------------------------------------
MemoryError Traceback (most recent call last)
<ipython-input-7-ef278566a16b> in <module>()
----> 1 for df in pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', chunksize=300000):
2 print(df.head(1))
C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in read_hdf(path_or_buf, key, **kwargs)
321 store = HDFStore(path_or_buf, **kwargs)
322 try:
--> 323 return f(store, True)
324 except:
325
C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in <lambda>(store, auto_close)
303
304 f = lambda store, auto_close: store.select(
--> 305 key, auto_close=auto_close, **kwargs)
306
307 if isinstance(path_or_buf, string_types):
C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in select(self, key, where, start, stop, columns, iterator, chunksize, auto_close, **kwargs)
663 auto_close=auto_close)
664
--> 665 return it.get_result()
666
667 def select_as_coordinates(
C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in get_result(self, coordinates)
1346 "can only use an iterator or chunksize on a table")
1347
-> 1348 self.coordinates = self.s.read_coordinates(where=self.where)
1349
1350 return self
C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in read_coordinates(self, where, start, stop, **kwargs)
3545 self.selection = Selection(
3546 self, where=where, start=start, stop=stop, **kwargs)
-> 3547 coords = self.selection.select_coords()
3548 if self.selection.filter is not None:
3549 for field, op, filt in self.selection.filter.format():
C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in select_coords(self)
4507 return self.coordinates
4508
-> 4509 return np.arange(start, stop)
4510
4511 # utilities ###
MemoryError:

My python environment:

INSTALLED VERSIONS
------------------
commit: None
python: 2.7.3.final.0
python-bits: 32
OS: Windows
OS-release: 7
machine: x86
processor: x86 Family 6 Model 42 Stepping 7, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
pandas: 0.15.2
nose: 1.3.4
Cython: 0.22
numpy: 1.9.2
scipy: 0.15.1
statsmodels: 0.6.1
IPython: 3.0.0
sphinx: 1.2.3
patsy: 0.3.0
dateutil: 2.4.1
pytz: 2015.2
bottleneck: None
tables: 3.1.1
numexpr: 2.3.1
matplotlib: 1.4.3
openpyxl: 1.8.5
xlrd: 0.9.3
xlwt: 0.7.5
xlsxwriter: 0.6.7
lxml: 3.4.2
bs4: 4.3.2
html5lib: None
httplib2: None
apiclient: None
rpy2: None
sqlalchemy: 0.9.9
pymysql: None
psycopg2: None

Edit 1:

It took about half an hour for the MemoryError to happen after executing read_hdf(), and in the meanwhile I checked taskmgr, and there’s little CPU activity and total memory used never exceeded 2.2G. It was about 2.1 GB before I execute the code. So whatever pandas read_hdf() loaded into the RAM is less than 100 MB (I have 4G RAM, and my 32-bit-Windows system can only use 2.7G, and I used the rest for RAM disk)

Here’s the hdf file info:

In [2]:
hdf = pd.HDFStore('raw_sample_storage2.h5')
hdf
Out[2]:
<class 'pandas.io.pytables.HDFStore'>
File path: C:/RawDataCollection/raw_samples/PLB_Gate/raw_sample_storage2.h5
/raw_sample_all frame_table (typ->appendable,nrows->308581091,ncols->10,indexers->[index],dc->[time,GW_time,node_id,X,Y,Z,status,seq,rssi,lqi])

Moreover, I can read a portion of the hdf file by indicating ‘start’ and ‘stop’ instead of ‘chunksize’:

%%time
df = pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', start=0,stop=300000)
print df.info()
print(df.head(5))

The execution only took 4 seconds, and the output is:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 300000 entries, 0 to 49999
Data columns (total 10 columns):
time 300000 non-null datetime64[ns]
GW_time 300000 non-null uint32
node_id 300000 non-null uint8
X 300000 non-null uint16
Y 300000 non-null uint16
Z 300000 non-null uint16
status 300000 non-null uint8
seq 300000 non-null uint8
rssi 300000 non-null int8
lqi 300000 non-null uint8
dtypes: datetime64[ns](1), int8(1), uint16(3), uint32(1), uint8(4)
memory usage: 8.9 MB
None
time GW_time node_id X Y Z status seq \
0 2013-10-22 17:20:58 39821761 3 20010 21716 22668 0 33
1 2013-10-22 17:20:58 39821824 4 19654 19647 19241 0 33
2 2013-10-22 17:20:58 39821888 1 16927 21438 22722 0 34
3 2013-10-22 17:20:58 39821952 2 17420 22882 20440 0 34
4 2013-10-22 17:20:58 39822017 3 20010 21716 22668 0 34
rssi lqi
0 -43 49
1 -72 47
2 -46 48
3 -57 46
4 -42 50
Wall time: 4.26 s

Noticing 300000 rows only took 8.9 MB RAM, I tried to use chunksize together with start and stop:

for df in pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', start=0,stop=300000,chunksize = 3000):
print df.info()
print(df.head(5))

Same MemoryError happens.

I don’t understand what’s happening here, if the internal mechanism somehow ignore chunksize/start/stop and tried to load the whole thing into RAM, how come there’s almost no increase in RAM usage (only 100 MB) when MemoryError happens? And why does the execution take half an hour just to reach the error at the very beginning of the process without noticeable CPU usage?